List five main groups of natural plant growth regulators. Write a note on discovery, physiological functions and agricultural/horticultural applications of any one of them. | NCERT solution | Class 11 Biology | Unit-15 Plant Growth and Development



Q.4:- List five main groups of natural plant growth regulators. Write a note on discovery, physiological functions and agricultural/horticultural applications of any one of them.

 

Answer:-
There are five main groups of natural plant growth regulators which are very much recognised as natural hormones in plants. These are:

  1. Auxins
  2. Gibberellins
  3. Cytokinins
  4. Abscisic acid
  5. Ethylene

Discovery of auxin: In 1880, Charles Darwin and Francis Darwin worked with the coleoptile of canary grass (Phalaris sp.) and found the existence of a substance in coleoptile tip, which was able to recognise the light stimulus and leads to the bending of tip towards light. Boysen and Jensen (1910-1913) worked on Avena seedling and explained that the substances secreted in the tip are soluble in water (gelatin).
Paal (1919) reported that the substances secreted in the tip are translocated downwards and caused cell elongation in half portion which was on the dark side and hence bending was observed in opposite direction.
F.W. Went (1928) further refined this experiment and supported the observations of Paal. He was the first person to isolate and name these substances of tip as auxins (Greek Auxein – means ‘to grow’).
In 1931, Kogl and Haagen-Smith isolated
crystalline compounds from human urine.
These were named as auxin-a, auxin-b and
heteroauxin.

Physiological functions of auxins:

  1. Auxins induce cambial cell divisions, shoot cell elongation and early differentiation of xylem and phloem in tissue culture experiments.
  2. In general, auxins initiate rooting but inhibit the growth of roots. IBA is the most potent root initiator.
  3. Auxins inhibit the growth of axillary buds (apical dominance) but enhance the size of carpel and hence earlier fruit formation.
  4. Application of auxins retards the process of senescence (last degradative phase), the abscission of leaves, fruits, branches, etc.
  5. Auxins induce feminisation, i.e., on male plant, female flowers are produced.

Agricultural/horticultural application of auxins:



  1. Application of auxins like IAA, IBA, NAA induce rooting in stem cuttings of many plants. This method is widely used to multiply several economically useful plants.
  2. Normally, auxins inhibit flowering however in litchi and pineapple, application of auxin promotes flowering thus used in orchards.
  3. Auxin induces parthenocarpy in some plants including tomato, pepper, cucumber and Citrus, thus, produces seedless fruits of more economic value.
  4. Auxins like 2, 4-D and 2, 4, 5-T are commercially used as weedicides, due to their low cost and greater chemical stability. They are selective herbicides (killing broad-leaved plants, but not grasses).
  5. For checking premature fruit drop, auxins are applied which prevent the formation of abscission zone in the petiole or just below the fruit. Auxin regulates maturing fruit on the trees of apples, oranges and grape fruit. High doses of auxins can
    cause fruit drop. Thus, heavy applications of synthetic auxins are used commercially to promote a coordinated abscission of various fruits to facilitate harvesting.
  6. Auxin, produced in the apical bud, suppresses the development of lateral buds, i.e., apical dominance. Thus practically used in prolonging the dormancy period of potato tubers.
  7. Naphthalene acetamide is used to prevent the lodging (excessive elongation and development of weak plants, specially in gramineae) or falling of crops.
  8. Auxin (2,4-D) promotes callus formation in tissue culture. Complete plantlets are regenerated from callus tissue, using auxins and cytokinin which are then transplanted into the soil. Now-a-days, this is a widely practised method of propagation in the field of agriculture and horticulture.